Function field

Results: 892



#Item
651Algebraic geometry / Valuation / Function / Preorder / Mathematics / Field theory / Order theory

Nominal Domain Theory for Concurrency David Turner and Glynn Winskel University of Cambridge Computer Laboratory Abstract. This paper investigates a methodology of using FM (FraenkelMostowski) sets, and the ideas of nomi

Add to Reading List

Source URL: www.cl.cam.ac.uk

Language: English - Date: 2009-06-23 10:57:40
652Field theory / Cocycle / Algebraic number field / Basis / P-adic L-function / Cohomology / Iwasawa theory / P-adic number / Abstract algebra / Algebra / Mathematics

Integral Eisenstein cocycles on GLn, II: Shintani’s method Pierre Charollois Samit Dasgupta∗ Matthew Greenberg† March 9, 2013

Add to Reading List

Source URL: people.ucsc.edu

Language: English - Date: 2013-03-09 23:18:18
653Propagator / Bessel function / Physics / Quantum field theory / Schwinger–Dyson equation

Alternative Numerical Techniques Gerald S. Guralnik∗ Doll, Sabo, Easther, Emirdag, Ferrante, Hahn and Petrov HET  Physics Dept, Brown University, USA†.

Add to Reading List

Source URL: chep.het.brown.edu

Language: English - Date: 2003-07-25 11:19:13
654Field theory / Analytic number theory / Algebraic number theory / Modular forms / Q-analogs / Algebraic number field / Elliptic curve / Theta function / P-adic number / Abstract algebra / Mathematics / Mathematical analysis

p-adic interpolation of half-integral weight modular forms Adriana Sofer [removed] 1

Add to Reading List

Source URL: rene.ma.utexas.edu

Language: English - Date: 2006-08-24 12:30:01
655Algebraic number theory / Field theory / Conjectures / Number theory / Class field theory / Brumer–Stark conjecture / Artin L-function / Class number formula / Dedekind zeta function / Abstract algebra / Mathematics / Algebra

Stark’s Conjectures by Samit Dasgupta a thesis

Add to Reading List

Source URL: people.ucsc.edu

Language: English - Date: 2008-09-13 15:54:05
656Field theory / Algebraic number theory / Algebraic number field / Brumer–Stark conjecture / Finite field / Field / Dirichlet series / Frobenius endomorphism / Spectral theory of ordinary differential equations / Abstract algebra / Algebra / Mathematics

A SHINTANI-TYPE FORMULA FOR GROSS–STARK UNITS OVER FUNCTION FIELDS SAMIT DASGUPTA ALISON MILLER Abstract. Let F be a totally real number field of degree n, and let H be a finite abelian extension of F . Let p denote a

Add to Reading List

Source URL: people.ucsc.edu

Language: English - Date: 2009-09-15 17:09:34
657Quantum mechanics / Quantum field theory / Algebraic structures / Spinor / Function / Interpretation / Sigma-algebra / Vector space / Inner product space / Mathematics / Algebra / Physics

arXiv:physics/9808010v1 [physics.data-an] 10 Aug[removed]UNREAL PROBABILITIES Partial Truth with Clifford Numbers Carlos C. Rodriguez Department of Mathematics and Statistics

Add to Reading List

Source URL: arxiv.org

Language: English - Date: 2008-02-01 19:34:57
658Statistical mechanics / Metropolis–Hastings algorithm / Partition function / Integral / Path integral formulation / Itō diffusion / Physics / Markov chain Monte Carlo / Quantum field theory

Mollied Monte Carlo Part I Daniel Doro Ferrante∗ G. S. Guralnik, J. D. Doll and D. Sabo HET  Physics Dept, Brown University, USA†.

Add to Reading List

Source URL: chep.het.brown.edu

Language: English - Date: 2003-07-25 10:48:41
659Field theory / Conjectures / Heegner point / Number theorists / Elliptic curve / Kenneth Alan Ribet / P-adic number / Prime number / Zeta function / Abstract algebra / Mathematics / Algebraic number theory

Gross–Stark units, Stark–Heegner points, and class fields of real quadratic fields by Samit Dasgupta A.B. (Harvard University) 1999

Add to Reading List

Source URL: people.ucsc.edu

Language: English - Date: 2008-09-13 15:53:21
660Analytic number theory / Modular forms / Field theory / Number theory / P-adic number / P-adic L-function / Symbol / Interpretation / Hecke operator / Mathematical analysis / Mathematics / Abstract algebra

THE p-ADIC L-FUNCTIONS OF EVIL EISENSTEIN SERIES ¨ BELLA¨ICHE AND SAMIT DASGUPTA JOEL Abstract. We compute the p-adic L-functions of evil Eisenstein series, showing that they factor as products of two Kubota–Leopoldt

Add to Reading List

Source URL: people.ucsc.edu

Language: English - Date: 2012-04-18 11:37:46
UPDATE